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Lie algebroids: spectral sequences and signature

J. Kubarski and A. S. Mishchenko

Abstract. It is proved that for any transitive Lie algebroid L on a compact oriented
connected manifold with unimodular isotropy Lie algebras and trivial monodromy
the cohomology algebra is a Poincaré algebra with trivial signature. Examples of
such algebroids are algebroids on simply connected manifolds, algebroids such that
the outer automorphism group of the isotropy Lie algebra is equal to its inner
automorphism group, or such that the adjoint Lie algebra bundle g induces a trivial
homology bundle H∗(g) in the category of flat bundles.
Bibliography: 27 titles.

§ 1. Introduction
1.1. Category of Lie algebroids.

1.1.1. Lie algebroids appear as infinitesimal objects of Lie groupoids, principal
fibre bundles, vector bundles ([1], see also [2]–[4]), TC-foliations and non-closed
Lie subgroups ([5], see also [6], [7]), Poisson manifolds (see [8]), and so on. Their
algebraic analogues are known as Lie pseudoalgebras [9], also called Lie–Reinhardt
algebras [10].

1.1.2. A Lie algebroid on a manifold M is a triple L = (L, [[ · , · ]], γL), where L
is a vector bundle on M with the space of cross-sections (SecL, [[ · , · ]]) endowed
with a structure of a Lie R-algebra, the map γL : L→ TM (the anchor) is a linear
homomorphism of vector bundles, and the following Leibniz condition is satisfied:

[[ξ, f · η]] = f · [[ξ, η]] + γL(ξ)(f) · η, f ∈ C∞(M), ξ, η ∈ SecL.

The anchor is bracket-preserving: γL ◦ [[ξ, η]] = [γL ◦ ξ, γL ◦ η] [9], [11].
A Lie algebroid is said to be transitive if γL is an epimorphism. For a transitive

Lie algebroid we have the Atiyah exact sequence

0 −→ g ↪→L γL−→ TM −→ 0,
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in which g := ker γL is a fibre bundle that is a Lie algebra bundle (LAB for brevity),
called the adjoint of L. The fibre gx of the bundle g at a point x ∈ M is a Lie
algebra with commutator

[v, w] = [[ξ, η]](x), ξ, η ∈ SecL, ξ(x) = v, η(x) = w, v, w ∈ gx.
The Lie algebra gx is called the isotropy Lie algebra of L at x ∈M . Clearly,

rankL = dimM + dimgx.

Each transitive Lie algebroid L over a contractible manifold M is isomorphic
to the trivial Lie algebroid ([12], [13]) TM × g with natural projection pr1 as the
anchor and bracket given by

[[(X, σ), (Y, η)]] =
(
[X, Y ], X(η)− Y (σ) + [σ, η]

)
,

X, Y ∈ X(M), σ, η ∈ C∞(M ; g).
If γL = 0, then L is said to be totally non-transitive. For example, if g is an LAB

adjoint to a transitive Lie algebroid, then g is a totally non-transitive Lie algebroid.
A splitting λ : TM → L of the Atiyah sequence 0 → g → L �

λ
TM → 0 is

called a connection in the Lie algebroid L. For the Lie algebroid of a principal
fibre bundle P there exists a one-to-one correspondence between connections in the
algebroid and usual connections in P . Each connection λ : TM → L determines a
covariant derivative ∇ in the adjoint bundle g by the formula ∇Xσ = [[λX, σ]] and
a curvature form Ω ∈ Ω2(M ; g) by the formula Ω(X, Y ) = λ[X, Y ]− [[λX, λY ]]. If
the isotropy Lie algebras are Abelian, then the covariant derivative ∇ in g is flat
and independent of one’s choice of the connection λ; it is said to be characteristic
for the Abelian Lie algebroid L.

1.1.3. Lie algebroids form a category with strong and with non-strong homomor-
phisms. (Recall that a strong homomorphism of vector bundles is a homomorphism
identical on the base manifold.)
Let L and L′ be two Lie algebroids on a manifoldM . A strong homomorphism

H : L′ → L of vector bundles (that is, a homomorphism over idM : M → M)
is called a (strong) homomorphism of Lie algebroids if γ ◦ H = γ′ and the map
SecH : SecL′ → SecL is a homomorphism of Lie algebras.
Let (L, [[ · , · ]], γ) and (L′, [[ · , · ]]′, γ′) be two Lie algebroids on manifoldsM andM ′,

respectively. By a (in general non-strong) homomorphism between these algebroids

H : (L′, [[ · , · ]]′, γ′)→ (L, [[ · , · ]], γ)
we mean a homomorphism of vector bundles H : L′ → L over a map f : M ′ → M ,
say, such that
(a) γ ◦H = f∗ ◦ γ′;
(b) let ξ, ξ′ ∈ SecL′ be two arbitrary cross-sections of L′ and let η1, . . . , ηn be

cross-sections of L forming a basis of SecL over an open subset U ofM . Then H ◦ξ
and H ◦ ξ′ can be expressed in the following form (over f−1[U ]):

H ◦ ξf−1[U ] =
∑
i

f i · (ηi ◦ f)f−1 [U ],

H ◦ ξ′f−1[U ] =
∑
j

f ′j · (ηj ◦ f)f−1 [U ]
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for suitable f i, f ′j ∈ C∞(M ′). We postulate that

H◦[[ξ, ξ′]]f−1[U ]=
(∑
i,j

f i ·f ′j [[ηi, ηj]]◦f+
∑
j

[(γ′◦ξ)(f ′j)−(γ′◦ξ′)(fj)]·ηj◦f
)
f−1[U ]

.

The tangent map f∗ : TM
′ → TM to a C∞-map f : M ′ →M of manifolds is an

example of a (non-strong) homomorphism of regular Lie algebroids.
The above, quite difficult and non-intuitive, definition is ‘evident’ from the

point of view of Lie groupoids. The concept of a non-strong homomorphism of
Lie groupoids is obvious: it must be compatible with the source, the target, and
partial multiplication. Passing to infinitesimal objects (Lie algebroids) we obtain
just a non-strong homomorphism of Lie algebroids as defined above.
In the case of Lie algebroids L and L′ on the same manifold M the concept

of homomorphism H : L′ → L over the identity map idM : M → M (that is, of
so-called strong homomorphism) coincides with the above-described one.

1.1.4. Let L′ = (L′, [[ · , · ]]′, γ′) and L = (L, [[ · , · ]], γ) be two Lie algebroids on
manifolds M ′ and M , respectively. The Cartesian product of L′ and L is the Lie
algebroid (L′ × L, [[ · , · ]]×, γ′ × γ) over the manifold M ′ ×M , where L′ × L is the
Cartesian product of vector bundles, and for ξ = (ξ1, ξ2), η = (η1, η2) ∈ Sec(L′×L)
the bracket

[[ξ, η]]× =
(
[[ξ, η]]1, [[ξ, η]]2

)
is given by the formulae

[[ξ, η]]1(x,y) = [[ξ
1( · , y), η1( · , y)]]′x + (γ ◦ ξ2)(x,y)(η1(x, · ))− (γ ◦ η2)(x,y)(ξ1(x, · )),

[[ξ, η]]2(x,y) = [[ξ
2(x, · ), η2(x, · )]]y + (γ′ ◦ ξ1)(x,y)(η2( · , y))− (γ′ ◦ η1)(x,y)(ξ2( · , y)).

Clearly, the bundle isomorphism TM × TN = T (M ×N) is an isomorphism of Lie
algebroids.

1.1.5. Let L and L′ be regular Lie algebroids on manifoldsM andM ′, respectively,
and let φ, φ′ : L′ → L be homomorphisms of Lie algebroids. By a homotopy joining
φ to φ′ we mean a homomorphism of Lie algebroids

H : TR × L′ → L
such that H(θ0, · ) = φ and H(θ1, · ) = φ′, where θ0 and θ1 are vectors zero tangent
to R at 0 and 1, respectively [14]. This definition can also be applied to homomor-
phisms of Lie algebras. A homotopy H induces a chain homotopy operator and, as
a consequence, the equality in cohomology φ# = φ′# [14].

1.1.6. We associate with a Lie algebroid L the cohomology algebra HL(M) [15]
defined via the DG-algebra (ΩL(M), dL) of L-differential forms (with real coeffi-
cients), where

ΩL(M) = Sec∧L∗, dL : Ω
∗
L(M)→ Ω∗+1L (M),

(dLΘ)(ξ0, . . . , ξk) =
k∑
j=0

(−1)j(γL ◦ ξj)(Θ(ξ0, . . . , ξ̂j, . . . , ξk))

+
∑
i<j

(−1)i+jΘ([[ξi, ξj]], ξ0, . . . , ξ̂i, . . . , ξ̂j, . . . , ξk),

Θ ∈ ΩkL(M), ξi ∈ SecL.
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Here L∗ is the space dual to L while ‘∗’ in Ω∗L denotes the gradation on differential
forms.
The exterior differential dL gives rise to the cohomology algebra

HL(M) = H(ΩL(M), dL).

For the trivial Lie algebroid TM — the tangent bundle of the manifold M —
the differential dTM is the usual de Rham differential dM of differential forms
on M , whereas for L = g, a Lie algebra, the differential dg is the usual Chevalley–
Eilenberg differential dg = δg. An arbitrary (in general, non-strong) homomorphism
H : L′ → L over a map f : M ′ → M determines a pullback of differential forms
H∗ : ΩL(M)→ ΩL′(M ′) by the formula

H∗(Θ)x′(v1, . . . , vk) = Θf(x′)(H(v1), . . . , H(vk)).

The pullback of differential forms commutes with exterior derivatives producing a
homomorphism on cohomology H# : HL(M)→ HL′(M ′).
1.2. Lie functors. The so-called Lie functors act from many categories of differ-
ential objects mentioned at the beginning, such as the categories of Lie groupoids,
principal bundles, vector bundles, TC-foliations, non-closed Lie subgroups, and so
on, in the category of Lie algebroids. They generalize the Lie functor for Lie groups.

Example 1. The Lie algebroid A(P )A(P )A(P ) of a GGG-principal bundle P = P (M,G)P = P (M,G)P = P (M,G).
There exist three distinct equivalent definitions of A(P ) [2]. One definition of
A(P ) is based on the vector bundle TP/G introduced by Atiyah [16] and is as
follows: A(P ) = TP/G is the space of orbits of the right action of G on TP
given by the differentials of right translations (see [3], [12], [2]). The anchor is
γ([v]) = π∗(v). The bracket is constructed on the basis of the following observation:
for each cross-section η ∈ SecA(P ) there exists a unique C∞ right-invariant vector
field η′ ∈ XR(P ) such that [η′(z)] = η(πz), z ∈ P , and the map SecA(P )→ XR(P ),
η �→ η′, is an isomorphism of C∞-modules. The bracket [[ξ, η]] for ξ, η ∈ SecA(P )
is defined so that [[ξ, η]]′ = [ξ′, η′]. One says that the transitive Lie algebroid arises
from the principal bundle. A transitive Lie algebroid is said to be integrable if it
arises from a principal bundle.
The Lie algebroid A(P ) has a simpler structure than the principal bundle P .

Namely, non-isomorphic principal bundles can possess isomorphic Lie algebroids.
For example, there exists a non-trivial principal bundle for which the Lie algebroid is
trivial (the non-trivial Spin(3)-structure of the trivial principal bundle R(5)×SO(3)
has this property [2]).

Example 2. The general form of a transitive Lie algebroid. Each transitive
Lie algebroid has — up to an isomorphism — the form described below. This was
demonstrated by Mackenzie [12] and, independently, by Kubarski [2].
Let (g,∇,Ωb) be a system consisting of an LAB g onM , a covariant derivative∇

in g, and a 2-form Ωb ∈ Ω2(M, g) on M with values in g satisfying the following
conditions:

(1) ∇2σ = −[Ωb, σ], σ ∈ Sec g;
(2) ∇X [σ, η] = [∇Xσ, η] + [σ,∇Xη], X ∈ X(M), σ, η ∈ Sec g;
(3) ∇Ωb = 0.
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Then TM ⊕ g is a transitive Lie algebroid with bracket defined by the formula

[[(X, σ), (Y, η)]] = ([X, Y ],−Ωb(X, Y ) +∇Xη −∇Xσ + [σ, η])

and anchor that is the projection onto the first component.
As Mackenzie [12] noted, this result leads to the first (algebraic) step of the

solution of the long-standing Weil problem: find out when a 2-form Ωb ∈ Ω2(M ; g)
is the curvature tensor of a connection in a principal bundle P (M,G) over M with
Ad-associated Lie algebra bundle g.
The second (last) step is the theorem ([12], [17]) giving the obstruction to the

integrability of the so constructed Lie algebroid TM ⊕ g.
Example 3. The Lie algebroid A(f)A(f)A(f) of a vector bundle fff [12], [18]. The fibre
A(f)x of A(f) is the space of linear homomorphisms l : Sec f→ fx such that there
exists a vector u ∈ TxM , the anchor of l, for which

l(f · ν) = f(x) · l(ν) + u(f) · νx,
f ∈ C∞(M), ν ∈ Sec f.

A cross-section ξ ∈ SecA(f) defines in an obvious manner a covariant differential
operator in f. The bracket of cross-sections of A(f) is defined in the classical fashion
for differential operators. A(f) is naturally isomorphic to the Lie algebroid of the
GL(V )-principal bundle (where V is the typical fibre of f) of all frames of f. Locally,
that is, over some neighbourhood U of a point in M , the Lie algebroid A(f)U is
isomorphic to the trivial algebroid TU ×End(V ) ([18], 5.4.4). Mackenzie [12] gives
an equivalent definition of the Lie algebroid CDO(f) of the vector bundle f.
The concept of Lie algebroid A(f) is adequate for the definition of a representa-

tion of a Lie algebroid on a vector bundle. Namely, by a representation of a Lie
algebroid L on a vector bundle f (over the same manifold) [12] (see also [18]) we
mean a (strong) homomorphism of Lie algebroids

T : L→ A(f).

Equivalently, it can be defined by a flat L-covariant derivative ∇ξσ, ξ ∈ SecL,
σ ∈ Sec f, in f, that is, an operator satisfying the Koszul axioms with one difference:
∇ξfσ = f∇ξσ+γ(ξ)(f)σ, where γ(ξ) ∈ X(M) is the anchor of ξ, and the curvature
tensor R∇ of ∇ξσ is zero: R∇(ξ1, ξ2) = ∇[[ξ1,ξ2]] − [[∇ξ1,∇ξ2]] = 0.
Each representation T : L→ A(f) induces the exterior power

∧k
T : L→ A

(∧k
f
)

defined so that

k∧
T (ξ)(σ1 ∧ · · · ∧ σk) =

k∑
i=1

σ1 ∧ · · · ∧ T (ξ)(σi) ∧ · · · ∧ σk,

ξ ∈ SecL, σi ∈ Sec f.
Let T : L → A(f) be a representation of a Lie algebroid L on a vector bundle f.

A cross-section σ ∈ Sec f is said to be T -invariant if T (ξ)(σ) = 0 for all ξ ∈ SecA.
Let L be a transitive Lie algebroid. Crucial for its properties is the adjoint

representation adL : L → A(g) of L on its adjoint Lie algebra bundle g = ker γ
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defined as follows: adL(ξ)(ν) = [[ξ, ν]], ξ ∈ SecL, ν ∈ Secg. In particular, we
obtain the exterior nth-power

∧n adL of the adjoint representation, which is called
the adjoint representation of the Lie algebroid L on the bundle

∧n
g.

From the above we see that a cross-section ε of
∧n
g is
∧n
adL-invariant if and

only if in each open subset U of M in which ε has the form εU = (h1 ∧ · · · ∧ hn)U ,
hi ∈ Sec g, for all ξ ∈ SecA we have

n∧
adA(ξ)(ε)U =

n∑
i=1

(h1 ∧ · · · ∧ [[ξ, hi]] ∧ · · · ∧ hn)U = 0. (1)

Example 4. The Lie algebroid A(M,F)A(M,F)A(M,F) of a tranversally complete foliation
(M,F)(M,F)(M,F) of a connected Hausdorff paracompact manifold MMM [5]. We recall
that a foliation (M,F) is said to be transversally complete (TC for brevity) if at
each point x ∈ M the family Lc(M,F) of complete global F-foliate vector fields
(such that the corresponding dynamical system respects the foliation) generates
the entire tangent space TxM . We add that
(a) transversally complete foliations perform a crucial role in the theory of

Riemannian foliations [6],
(b) among them there exist foliations whose Lie algebroids are non-integrable.

This last fact — discovered by Almeida and Molino in 1985 [17] — was one of the
most important moments in the theory of Lie algebroids.
The first structure theorem of Molino ([6], Theorem 4.2) states that the closures

of leaves of a TC-foliation F form a simple foliation Fb, said to be basic, and are
fibres of a locally trivial basic fibration πb : M → W onto a Hausdorff paracompact
base manifold W .
Let Q = TM/E (E = TF) be the transverse bundle of F. A cross-section ξ of Q

having a foliate vector field as its representative is called a transversal field. Its
value at a point x ∈M uniquely determines the value at each point y of (Lb)x, the
leaf through x of the basic foliation Fb. Transverse fields play a similar role to that
of right-invariant vector fields on principal bundles. The quotient A(M,F)=Q/≡ of
Q by the relation identifying the values of transverse fields at the points of a leaf
of Fb (corresponding to right translations of vectors tangent to a principal bundle)
has a natural structure of a vector bundle over W . The global cross-sections of
A(M,F) correspond to transverse fields. These latter form a Lie algebra, and so
does SecA(M,F). Adding the homomorphism γ : A(M,F)→W defined simply
by means of the fibration πb : M → W we obtain a transitive Lie algebroid. A
foliation (M,F) on a compact manifold is said to be transversally parallelizable (TP
for brevity) if the transverse bundle Q is trivial and possesses a basis of transverse
fields. Clearly, a TP-foliation is transversally complete.

Example 5. The Lie algebroid A(G;H)A(G;H)A(G;H) of a non-closed Lie subgroupHHH of
a group GGG. This is the Lie algebroid of the TC-foliation FG,H = {aH; a ∈ G} of
left cosets of a Lie group G by a connected Lie subgroup H of G. (If H is closed,
then A(G;H) is trivial, therefore this Lie algebroid is interesting only if H is not
closed.) The algebroid A(G;H) can be constructed without the use of the general
theory of TC-foliations [7] since its total space is equal to the space of orbits of the
following free right action R : Q×H → Q of the closure H of H on the transverse
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bundle Q: for t ∈ H, Rt : Q → Q is the automorphism defined by the differential
of the right translation Rt : TG → TG with the use of the stability of the tangent
space E to the foliation under Rt. A cross-section ξ of Q is a transverse field if and
only if ξ is invariant with respect to the action R. Therefore the relation ‘≡’ on Q
yielding A(G;H) can be defined by the formula v ≡ w ⇔ there exists t ∈ H such
that Rt(v) = w.

We recall that A(G;H) is a transitive Lie algebroid over the homogeneous mani-
foldG/H with trivial adjoint bundle of Abelian isotropy Lie algebras g ∼= G/H×h/h
[18], [7]. Under this identification we have the Atiyah sequence

0→ G/H × h/h→ A(G,H)→ T (G/H)→ 0,

and the characteristic flat covariant derivative is equal to the standard derivative
of vector-valued functions ∇X = ∂X .
Below we present interpretations of the cohomology algebras of the Lie algebroids

of principal bundles and TC-foliations.

Examples. (1) If L = A(P ) = TP/G for a G-principal fibre bundle P →M , then

ΩL(M) ∼= Ωr(P ) ↪→ Ω(P ),

Ωr(P ) is the space of G-right invariant differential forms on P and

HL(M) ∼= H(Ωr(P ))
i

HdR(P ).

The homomorphism i is an isomorphism if G is compact and connected.
(2) If L = A(M ;F) → W is the Lie algebroid of a TC-foliation F on M with

base manifold W , then
ΩL(W ) ∼= Ω(M ;F),

where Ω(M ;F) is the algebra of F-basic differential forms, therefore HL(W ) ∼=
H(M ;F) is the algebra of basic cohomology [19].

1.3. Invariantly oriented Lie algebroids and signature. In what follows we
are interested in transitive Lie algebroids with cohomology algebra HL(M) satis-
fying the Poincaré duality [19]. TUIO-Lie algebroids [20] (transitive unimodular
invariantly oriented) are examples here. To define a TUIO-Lie algebroid consider

the Atiyah sequence 0 −→ g ↪→L γL−→ TM −→ 0 and assume that
(A1) m = dimM , n = rankg = dimgx,

∧n
g is a trivial vector bundle.

Let ε ∈ Sec
∧n
g be an orientation form of g. A fundamental role is played by

the fibre integral [20]

�
∫
L

: Ω∗L(M)→ Ω∗−ndR (M),

which is defined as follows:
if deg Φ < n, then

�
∫
L

Φ = 0,



1086 J. Kubarski and A. S. Mishchenko

while if k = degΦ � n, then(
�
∫
L

Φ

)
x

(w1 ∧ · · · ∧ wk−n) = (−1)n(k−n)Φx(εx ∧ w̃1 ∧ · · · ∧ w̃k−n),

where the w̃i ∈ Lx are arbitrary vectors such that γL(w̃i) = wi. In other words

γ∗L

(
�
∫
L

Φ

)
= (−1)n(k−n)ιεΦ,

where ιε is the substitution operator ιε : Ω
n
L(M)→ Ωn−kL (M) defined by the formula

(ιεΦ)x(v1 ∧ · · · ∧ vn−k) = Φx(εx ∧ v1 ∧ · · · ∧ vn−k), vi ∈ Ax.

The operator �
∫
L

commutes with the exterior derivatives dL and dM if and only

if [20]

(a) the isotropy Lie algebras gx are unimodular, that is, H
n(gx) = R

1,
(b) the cross-section ε is invariant with respect to the adjoint representation
of L on

∧n
g, that is, (1) holds.

A Lie algebroid L satisfying (a) and (b) is called a TUIO-Lie algebroid. The

fibre integral operator �
∫
L

: Ω∗L(M) → Ω∗−ndR (M) leads then to a homomorphism in
cohomology

�
∫#
L

: H∗L(M)→ H∗−ndR (M).

Examples. (1) The Lie algebroid A(P ) of a G-principal bundle P → M is a
TUIO-Lie algebroid if G has the following property: det(AdG a) = +1, a ∈ G
[20], [19].
(2) The Lie algebroid A(M ;F) of a TP-foliation on a compact simply connected

manifold is a TUIO-Lie algebroid.
(3) The Lie algebroid A(G;H) of a non-closed Lie subgroup H of a group G

(that is, the Lie algebroid of the TC-foliation of left cosets of H in G) is a TUIO-
Lie algebroid. The adjoint Lie algebra bundle of A(G;H) is a trivial bundle of
adjoint Lie algebras [7].

Assume that M is compact and oriented. For a compactly supported (m+ n)-
differential form ω on L, ω ∈ Ω∗L,c(M), we set∫

L

ω :=

∫
M

(
�

∫
L

ω

)
.

The operator

∫
L

leads to an epimorphism [7]

∫ #
L

: HL,c(M)→ R.
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The Poincaré scalar product

H∗L(M)×Hm+n−∗L,c (M)→ R, (α, β) �−→
∫ #
L

α ∧ β,

is non-degenerate, that is,

HL(M) ∼= (HL,c(M))∗.

Consequently, we have, for example,

Hm+nL,c (M)
∼= R.

Assume now that

(A2) M is compact, connected, and oriented.

Then we have HL,c(M) = HL(M), and the scalar Poincaré product

P∗L : H
∗
L(M)×Hm+n−∗L (M)→ R, (α, β) �−→

∫ #
L

α ∧ β

is non-degenerate. If m+ n = 4k, then P2kL is symmetric and its signature (some-
times called the index) is denoted by Signε(L) (or briefly Sign(L)) and is called the
signature of L (the sign + or − of the signature depends on the choice of
the invariant orientation ε). In other cases (m + n �= 0 (mod 4)) Signε(L) = 0
by definition.

Problem 1 (posed in [19]). Calculate the signature Signε(L) and give conditions
for the equality

Signε(L) = 0.

Note that this equality holds in the following two classical cases:

(1) L = g is a unimodular Lie algebra;
(2) L = A(P ) is the Lie algebroid of a principal fibre bundle over a compact
orientable manifold with compact connected structure Lie group.

To investigate the signature of L we use the technique of spectral sequences for
the Čech–de Rham complex K∗,∗ of L-differential forms, which is defined similarly
to the complex for a manifold, and use the celebrated methods and results in [21].
To this end we recall the main theorem of that paper.

Theorem 2. Let E → B be a fibre bundle with typical fibre F satisfying the
following conditions:

(1) E, B, and F are compact connected oriented manifolds;
(2) the fundamental group π1(B) acts trivially on the cohomology ring H

∗(F )
of F .

If E, B, and F are coherently oriented so that the orientation of E is induced by
those of F and B, then the index of E is the product of the indices of F and B,
that is,

Sign(E) = Sign(F ) · Sign(B).
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The authors of [21] consider the cohomology spectral sequence Ep,qs of the bundle
E → B with the reals as the coefficient field. The term E2 by assumption (2) is
the bigraded algebra

Ej,i2
∼= Hj(B;Hi(F )) ∼= Hj(B) ⊗Hi(F ),

therefore
Ej,i2 = 0 for j > m or i > n.

Clearly, E2 is a Poincaré algebra by assumption (1). Using a spectral-sequences
argument the authors observe that

(Es, ds, · ), s � 2,

are Poincaré algebras with Poincaré differentiation. Hence the infinite term (E∞, · )
is also a Poincaré algebra and

SignE2 = SignE3 = · · · = SignE∞.

The last step is to prove that SignE∞ = SignH(E). Note that this is not so
trivial since, in general, the algebras E∞ and H(E) are not isomorphic (although
E∞ ∼= H(E) as bigraded spaces).
We use the exposition in [22] or [23] of the version of the spectral sequence of a

fibred manifold in the language of the Čech–de Rham complex on a so-called good
covering and generalize it to the case of transitive Lie algebroids.
The double complex K∗,∗ constructed below for arbitrary transitive Lie alge-

broids coincides in the case of the Lie algebroid A = A(M,F) over the base manifold
W of a TP-foliation (M,F) with the double complex in [24] (thanks to the natural
DG-isomorphism of algebras ΩL(W ) ∼= Ω(M/F)).

§2. Čech–de Rham complex of transitive Lie algebroids
Let L be an arbitrary transitive Lie algebroid on a manifold M with isotropy

Lie algebras gx isomorphic to a given Lie algebra g. If U is an open subset of M
diffeomorphic to Rm, then the restriction LU is a Lie algebroid isomorphic to the
trivial one TU × g. Such an isomorphism is not natural and depends on the choice
of a flat connection in LU . Denote (for brevity) the cohomology algebra HLU (U)
by HL(U). By Künneth’s formula [19],

HL(U) ∼= H(U)⊗H(g) ∼= H(g).

Let U = {Uα}α∈J be a good covering ofM , where J is a countable ordered index
set. This means that all the Uα and all finite intersections

⋂
i Uαi are diffeomorphic

to the Euclidean space Rm.
We can form the double complex (of Čech–de Rham type)

Kp,q = Cp(U,ΩqL) :=
∏

α0<···<αp
ΩqL(Uα0...αp),
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p, q � 0, with the product structure

∪ : Kp,q ×Kr,s → Kp+r,q+s

defined by the formula

(ω ∪ η)α0...αp+r = (−1)qrωα0...αp |Uα0...αp+r ∧ ηαp...αp+r |Uα0...αp+r .

This complex has two boundary homomorphisms, δ and d.
The vertical homomorphism

d : Cp(U,ΩqL)→ Cp(U,Ω
q+1
L )

acts as an external differential of L-forms:

d = (−1)pdL.

The horizontal homomorphism

δ : Cp(U,ΩqL)→ C
p+1(U,ΩqL)

acts as a coboundary homomorphism

(δω)α0...αp+1 =

p+1∑
i=0

(−1)iωα0...̂ı...αp+1 |Uα0...αp+1 .

Both horizontal and vertical homomorphisms d and δ are antiderivations of
degree +1 in the total gradation:

d, δ : K(r) → K(r+1), K(r) =
⊕
p+q=r

Kp,q ,

d(ω ∪ η) = dω ∪ η + (−1)deg ωω ∪ dη,

and the same holds for δ. Therefore,

(K,Kp,q,∪, d, δ)

is a double complex of the first quadrant with product structure. It is convenient
to represent this complex as a diagram:

C∗(U,Ω∗L) =




...
...

...�d �d �d
C0(U,ΩqL)

δ−→ C1(U,ΩqL)
δ−→ · · · δ−→ Cp(U,ΩqL)

δ−→ · · ·�d �d �d
...

...
...�d �d �d

C0(U,Ω1L)
δ−→ C1(U,Ω1L)

δ−→ · · · δ−→ Cp(U,Ω1L)
δ−→ · · ·�d �d �d

C0(U,Ω0L)
δ−→ C1(U,Ω0L)

δ−→ · · · δ−→ Cp(U,Ω0L)
δ−→ · · ·
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The total differential operator D = d+ δ is also an antiderivation. The inclusion

r : Ω∗L → K0,∗ ⊂ K(∗), r(ω)α = ω|Uα,

of ΩL in the total complex produces a homomorphism of DG-algebras. Indeed, the
operator d commutes with r and δ ◦ r = 0. Hence r ◦D = D ◦ r. Consequently, we
have a graded homomorphism in cohomology:

r# : H∗L(M)→ H(∗)(K,D).

Proposition 3. The Mayer–Vietoris sequence of a transitive Lie algebroid, that
is, the augmented row in the double complex

0 −→ ΩqL(M)
r−→ K0,q δ−→ K1,q δ−→ · · · ,

is exact.

The proof is standard and can be obtained with the use of a partition of unity
{ρα} subordinate to the covering U = {Uα} and the homotopy cochain operator

H : Kp,q → Kp−1,q , (Hω)α0...αp−1 =
∑
α

ρα · ωαα0...αp−1 ,

for which one has

Hδ + δH = Id: Kp,q → Kp,q , p � 1.

The following result is standard (see, for example, [22]).

Proposition 4. If all the rows of an augmented double complex are exact, then the
D-cohomology of the complex is isomorphic to the cohomology of the initial column.

One consequence of it is as follows.

Corollary 5. The homomorphism r# : H∗L(M) → H(∗)(K,D) is an isomorphism
of DG-algebras in cohomology.

Consider now the ‘horizontal’ decreasing filtration

Kj =
⊕
p�j
q�0

Kp,q.

In view of the general construction of spectral sequences (see, for example, [25],
1.4.2; see also [26] and [22]), for the above filtration one can construct, in accordance
with the multiplicative structure of the DG-algebra (K,K(r),∪, D,Kj), the spectral
sequence of the graded differential groups (Ep,qs , ds):

ds : E
p,q
s −→ Ep+s,q−s+1s ,

such that
Ep,qs+1 = H(E

p,q
s , ds),
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and the group Ep,q∞ is adjoint to the cohomology ring H(K,D) with respect to the
filtration induced by the filtration {Kj}. The filtration Kj is regular, K0 = K,
therefore the spectral sequence (Ep,qs , ds) converges to H(K,D) (see [26]). More-
over, the following results hold:

(1) the Es, 0 � s �∞, are graded algebras;
(2) the ds are antiderivatives with respect to the total gradation of bidegree
(s, 1− s);

(3) the natural identifications

σs : Es+1 → H(Es, ds), σ∞ : E∞ → E0(H(K,D))

are isomorphisms of bigraded algebras. In general, the algebras H(K,D)
and E∞ are not isomorphic, although H(K,D) ∼= E∞ are non-canonically
isomorphic as bigraded vector spaces.

The zero term Ep,q0 of the spectral sequence is defined by the formula

Ep0 = Kp/Kp+1, Ep,q0 = K
p,q.

Hence the differential

d0 : E
p,q
0 −→ E

p,q+1
0 ,

d0 : K
p,q = Cp(U,ΩqL) −→ Kp,q+1 = Cp(U,Ω

q+1
L )

coincides with d.
The first term of the spectral sequence (Es, ds) is as follows:

Ep,q1 = H
p,q(K, d) = Cp(U,HqL), d1 = δ

# : Ep,q1 −→ E
p+1,q
1 ,

where
H∗L = (U �−→ H∗L(U))

is the Leray-type presheaf of cohomology, locally constant on the good covering,
with values in the group (more precisely, the algebra) H∗(g).

Theorem 6. The second term of the spectral sequence Ep,qs can be calculated by
the formula

Ep,q2 = H
p,q(H(K,D), δ#) = Hp

δ#
(U,HqL).

Thus, from Theorem 6 and Corollary 5 one obtains the following consequence.

Theorem 7 (Leray theorem for transitive Lie algebroids). There exists a spectral
sequence Ej,is converging to the cohomology HL(M) of the Lie algebroid L,

Ej,is =⇒ HL(M)

such that Ej,i2 = H
j
δ#
(U,HiL).

Remark 1. We make several observations concerning the sheaf H̃∗L associated with
the presheaf H∗L:

(H̃∗L)(x) = lim ind
U�x

H∗L(U).
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Note that the bundle H(g) of cohomology of isotropy Lie algebras with typical
fibre H(g) is flat, that is, possesses local trivializations with locally constant tran-
sition functions. Indeed, for a neighbourhood M ⊃ U ∼= Rm and each isomorphism
of Lie algebroids

ϕU : LU → TU × g

we have a local trivialization

ϕ̃U : H(g)U → U ×H(g),

defined by the formula

(ϕ̃U )x =
(
(ϕ+Ux)

−1)# : H(gx)→ H(g),
where ϕ+Ux : gx → g is the isomorphism of Lie algebras that is the restriction of ϕU
to the kernel gx = ker(γL)x of the anchor γL.
Denote by AL the set of so-defined local trivializations {ϕ̃U} of the bundle H(g).
Two local trivializations ϕU and ϕV on neighbourhoods U and V , respectively,

give a smooth family of isomorphisms of Lie algebras

λx : g→ g, λx = ϕ
+
Ux ◦ (ϕ

+
V x)

−1, x ∈ U ∩ V.

Clearly, the transition function

x �−→ (λx)# : H(g)→ H(g)

is locally constant.
Indeed, for two arbitrary points x and y belonging to the same connected com-

ponent of U ∩ V and for an arbitrary smooth arc α : R→ U ∩ V joining x to y we
can consider the composite homomorphism of Lie algebroids

TR× g α∗×id−−−−→ T (U ∩ V )× g ϕU◦(ϕV )−1−−−−−−−→ T (U ∩ V ) × g pr2−−−−→ g.

The non-strong homomorphism of Lie algebroids over R × {∗} → {∗} obtained in
this way is a homotopy joining λx to λy. Consequently, λ

#
x = λ

#
y (see § 1.1.5).

The above enables us to replace the topology of the bundle H(g) by a topology
Hd(g) such that the fibres become discrete and for each v ∈ H(g) and each local
trivialization ϕU on U ∼= Rm the cross-section x �→ (ϕ+Ux)#(v) is a homeomorphism
onto an open subset of Hd(g).
Clearly, Hd(g) gives rise to a sheaf. In other words, the transition functions

are continuous functions with values in the group Aut(g) with topology different
from the classical topology and defined as follows. Let ϕ ∈ Aut(g) be an automor-
phism of the algebra g and let ϕ# : H(g)→ H(g) be the induced automorphism of
the cohomology group. Denote by Auth(g) the stationary subgroup with respect
to the action in cohomology, that is, the subgroup of all automorphisms ϕ ∈ Aut(g)
such that ϕ# = Id. We change the topology on the group Aut(g) by adding an
additional open subset, the subgroup Auth(g). Let Aut

s(g) be the group Aut(g)
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with the new topology. Clearly, the quotient group Auts(g)/Auth(g) is discrete
and is the structure group of the bundle Hd(g) corresponding to the atlas AL.
Let us show that there exists an isomorphism of sheaves

ρ : H̃L ∼= Hd(g)
defined as follows: consider the inclusion of bundles ι : g ↪→ L, which can be
regarded as a homomorphism of Lie algebroids, where g is a totally non-transitive
Lie algebroid with anchor zero.
Then for each open set U one has the homomorphism of cohomology

ι# : HL(U) −→ Hg(U).
The space H∗L(U) is calculated as follows. If one considers an open subset from the
good covering, that is, U ∼= Rm, then the algebroid LU is isomorphic to the trivial
algebroid TM ⊕ g.
Hence [19] the algebra of LU -differential forms is isomorphic to the anticommu-

tative tensor product
ΩL(LU ) = Ω(TMU ) ⊗∧(g∗),

with differential dU ⊗ id+ω⊗ δg, where ω(ϕ) = (−1)degϕϕ and δg is the Eilenberg–
Chevalley differential.
Hence the cohomology ring is

HL(U) = H(U) ⊗H(g) ∼= H(g)
since

H(U) ∼= H0(U) = R.
Moreover, the elements of H0(U) can be represented by constant functions on U .
Hence each element s ∈ H∗L(U) is represented by a constant section in the bundle
U ⊕H∗(g). Thus, the image of the homomorphism ι# consists of constant sections
of the bundle Hg(U), that is, continuous sections of the sheaf Hd(g).
In other words the homomorphism of sheaves ρ defined by the formula

H̃L(x) = lim ind
U�x

HL(U)
ρ#x−→ H(gx), [s] �−→ [ρ#x s],

where ρx : gx↪→L is a homomorphism of Lie algebroids over the inclusion ι : {x}↪→M ,
is an isomorphism.
We now give an example in which the LAB g is trivial with respect to the struc-

ture group Auts(g). We assume that the isotropy Lie algebras gx are Abelian and
the LAB g is trivial in the usual sense: g ∼= M × g. Then g is also trivial with
respect to Auts(g), or equivalently, the sheaf H̃L ∼= Hd(g) is globally constant; in
particular, H̃L has trivial monodromy if the characteristic covariant derivative
in M × g is the standard derivative of vector-valued functions ∇X = ∂X . The Lie
algebroid A(G;H) of a non-closed Lie subgroup H of a group G is an example
here [8].

Indeed, the Atiyah sequence of A is as follows: 0 −→M×g ↪→ L γL−→ TM −→ 0.
Hence choosing locally defined flat connections λ : TU → AU we can define local
trivializationsϕU : LU → TU×g by the formula (ϕU )−1(X, σ) = λ(X)+σ, therefore
(ϕU )

+ = id: g → g, which implies that the subatlas of AL defined above gives
one local trivializations of Hd(g) with trivial structure group {id}. Therefore,
H̃L ∼=M ×H(g)d, where H(g)d is the vector space with discrete topology.
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§3. Signature of transitive Lie algebroids with trivial monodromy
We assume that

(A3) the presheaf H∗L is constant on some good covering U, that is, for an
arbitrary open set U ∈ OpenU(M) (the subcategory of finite intersections
Uα0...αp = Uα0 ∩ · · · ∩Uαp of open sets in U) there exists an isomorphism of
algebras

ϕU : HL(U) ∼= H(g)
such that all composites of the form ϕV ρ

U
V ϕ
−1
U are equal to the identity of the

algebra H(g), where the ρUV : HL(U)→ HL(V ) (V, U ∈ OpenU(M), V ⊂ U)
are restriction operators in the presheaf. In other words, the diagram

HL(U)
ϕU−−−−→ H(g)�ρUV �Id

HL(V )
ϕV−−−−→ H(g)

is commutative.

Condition (A3) is equivalent to the following one:

(A3′) the monodromy representation of the presheaf H∗L of the fundamental group

ρ : π1(M) = π1(N(U))→ Aut(H(g))

is trivial.

It is clear that both conditions (A3) and (A3′) are equivalent to the triviality of
the monodromy representation of the fundamental group of the manifoldM for the
adjoint bundle of isotropy Lie algebras, that is, the kernel of the anchor g := ker γL.

Examples. The condition of the triviality of the monodromy holds in the following
cases:

(1) the manifold M is simply connected (π1(N(U)) = π1(M) = 0, therefore
ρ = 0);

(2) the adjoint bundle of isotropy Lie algebras g is trivial with respect to the
canonical atlas of local trivializations AL and the structure group Aut

s(g)
(see Remark 1);

(3) Aut(G) = Int(G), where G is a simply connected Lie group with Lie algeb-
ra gx.

Leray’s formula now yields

Ej,i2 = H
j
δ#
(U,HiL)

∼= Hj(U, Hi(g)) ∼= Hj(U,R)⊗Hi(g) ∼= HjdR(M)⊗H
i(g).

All isomorphisms here are canonical isomorphisms of bigraded algebras. This means
that E2 lives in the rectangle j � m, i � n and

E
(m+n)
2 = Em,n2 = HmdR(M) ⊗Hn(g).

By (A1), (A2), and the additional condition

(A4) the isotropy Lie algebra g is unimodular, that is, dimHn(g) = 1,
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we obtain the following results:

(1) dimE
(m+n)
2 = dimHm(M) · dimHn(g) = 1;

(2) E2 = HdR(M) ⊗ H(g) is a Poincaré algebra with respect to the total gra-
dation, with top group E

(m+n)
2 = Em,n2 .

We recall (see [21]) that a graded finite-dimensional algebra

(
A =

⊕
0�r<∞

Ar ,∪
)

is called a Poincaré algebra if the following properties hold:

(1) there exists a superscript n0 such that A
r = 0 for r > n0 and dimA

n0 = 1;
(2) x∪ y = (−1)ijy ∪ x for x ∈ Ai and y ∈ Aj , that is, (A,∪) is an anticommu-
tative algebra;

(3) let ξ ∈ An0 , ξ �= 0, be a basis element of An0 . Then the bilinear form

〈 · , · 〉 : Ar ×An0−r → R

relative to ξ (that is, the form defined by the formula 〈x, y〉ξ = x ∪ y) is
non-degenerate.

Then Ar ∼= (An0−r)∗ and dimAr = dimAn0−r. The key to the further investigation
is the concept of Poincaré differentiation, that is, a linear homomorphism d : A→ A
satisfying the following conditions:

(1) d2 = 0;
(2) d[Ar] ⊂ Ar+1;
(3) d is an antiderivation;
(4) d[An0−1] = 0.

By analogy with the signature of an oriented manifold we have the signature
of the Poincaré algebra

(
A =

⊕
Ar ,∪

)
relative to ξ ∈ An0 , ξ �= 0. We set it

equal to zero if n0 �= 0 (mod4), while if n0 = 4k, then SignA is the signature of
the non-degenerate symmetric bilinear form 〈 · , · 〉 : A2k×A2k → R defined relative
to ξ.
The next lemma is very useful for what follows.

Lemma 8 [21]. If (A∗,∪, d) is a Poincaré algebra with Poincaré differentiation,
then the graded cohomology algebra (H∗(A),∪) is a Poincaré algebra relative to the
same element ξ ∈ An0 = Hn0(A, d), ξ �= 0, and one has the equality

SignA = SignH(A).

Examples. (1) Let E be an arbitrary finite-dimensional vector space. Then the
exterior algebra (∧E,∧) is a Poincaré algebra of signature zero.
(2) Let g be an arbitrary real Lie algebra. Then the system

(∧g∗,∧, δg)



1096 J. Kubarski and A. S. Mishchenko

with Chevalley–Eilenberg differential δg is a Poincaré algebra with Poincaré
differentiation if and only if g is unimodular. The above lemma shows that if
g is unimodular, then the cohomology algebra H(g) is also a Poincaré algebra and

SignH(g) = Sign∧g∗ = 0.

If L is a transitive Lie algebroid over a compact oriented connected manifoldM
with unimodular isotropy Lie algebra and trivial monodromy representation in the
cohomology of the adjoint bundle of isotropy Lie algebras, then for a good covering
the second term E2 of the spectral sequence is a Poincaré algebra living in the

rectangle j � m, i � n with top group E(m+n)2 = Em,n2 .
Our aim is to compare the signature of E2 with the signature of L in the case

when L is a TUIO-Lie algebroid. The Chern–Hirzebruch–Serre arguments [21] are
purely algebraic and lead to the following general result.

Theorem 9. Let (A,Ar ,∪, D, Aj) be a DG-algebra with decreasing filtration Aj ,
and (Ej,is , ds) its spectral sequence. Assume that there exist positive integers m
and n such that

(1) Ej,i2 = 0 for j > m and i > n;
(2) E2 is a Poincaré algebra with respect to the total gradation, with top group

E
(m+n)
2 = Em,n2 .

Then each term (E
(∗)
s ,∪, ds), 2 � s < ∞, is a Poincaré algebra with Poincaré

differentiation. The infinite term (E
(∗)
∞ ,∪) is also a Poincaré algebra and

SignE2 = SignE3 = · · · = SignE∞.

Proof. Clearly, all terms E3, E4, . . . , E∞ live in the same rectangle j �m, i� n.
We can use the following property of spectral sequences [26]: if Ej,is = 0 for

some s, j, i, then 0 = Ej,is = E
j,i
s+1 = · · · = Ej,i∞ . Now, the bidegree argument

(d2 : E
j,i
2 → E

j+2,i−1
2 ) shows that

d2[E
(m+n−1)
2 ] = 0

(see Fig. 1). Therefore, E
(m+n)
2 = E

(m+n)
3 = · · · = E(m+n)∞ , that is, we have

Em,n2 = Em,n3 = · · · = Em,n∞ .
Thus, we start with the assumption that (E2,∪, d2) is a Poincaré algebra with

Poincaré differentiation. By Lemma 8 we obtain that E3 = H(E2, d2) is a Poincaré
algebra, and relative to the same element 0 �= ξ ∈ Em,n3 = Em,n2 we have

SignE2 = SignE3.

The same argument shows that d3 is Poincaré differentiation and SignE3 = SignE4,
and so on. As a result,

SignE2 = SignE3 = SignE4 = · · · .
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E
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Figure 1

Since the term E2 lies in a finite rectangle, the spectral sequence Es collapses in

some term Es0. Hence E
(r)
s
∼= E(r)∞ for s > max{s0, n}, which means that (E∞,∪)

is a Poincaré algebra and SignEs0 = SignE∞. As a result we obtain

SignE2 = SignE3 = · · · = SignE∞.

Conclusion 10. If L is a transitive Lie algebroid on a compact oriented connected
manifold M with unimodular isotropy Lie algebras gx ∼= g and monodromy in the
cohomology of the adjoint bundle g of isotropy Lie algebras is trivial, then the terms
E2, . . . , E∞ are Poincaré algebras and

0 = SignM · Sign g = SignE2 = · · · = SignE∞.

It remains to prove the equality SignE∞ = SignHL(M). The same arguments
as in the above-mentioned original paper by Chern, Hirzebruch, and Serre lead to
the following general result.
Let (A,Ar,∪, D, Aj) be an arbitrary DG-algebra with decreasing filtration with

regularity A0 = A:

A = A0 ⊃ · · · ⊃ Aj ⊃ Aj+1 ⊃ · · · ,

compatible with the DG-structure, that is,

AiAj ⊂ Ai+j , D(Aj) ⊂ Aj, Aj =
⊕
r

(Ar ∩Aj).
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Let (Ej,is , ds) be the spectral sequence associated with this filtration. Assume also
that

(1) the infinite term Ep,q∞ lives in the rectangle 0 � p � m, 0 � q � n;
(2) dimEm,n∞ = 1;
(3) E∞ is a Poincaré algebra with respect to the total gradation.

In particular, dimE∞ is finite.

Theorem 11. Under the above assumptions about the algebra A its cohomology
algebra satisfies the following conditions:

(1) Hm+n(A) ∼= Em,n∞ , that is dimHm+n(A) = 1;

(2) the algebra H(A) =
⊕m+n
r=0 H

r(A) is a Poincaré algebra;
(3) the signature of the cohomology H(A) is equal to that of the infinite term
of the spectral sequence

SignE∞ = SignH(A)

under a suitable choice of generators of the top groups.

Proof. (1) This is obvious because Hm+n(A) ∼= E(m+n)∞ ∼= Em,n∞ and, by assump-
tion, dimEm,n∞ = 1.
(2) Let Aj,i = Aj+i ∩ Aj . The algebra H(A) possesses a graded filtration

Hj,i(A) = π[Z ∩ Aj,i], H0,i(A) = Hi(A), where Z is the kernel of the differen-
tial D and π is the quotient homomorphism modulo the range of the differential D.
The associated space E0(H(A)) has the bigradation

Ej,i0 (H(A))
∼= Hj,i(A)/Hj+1,i−1(A).

Consider the decreasing filtration

Hr(A) = H0,r(A) ⊃ H1,r−1(A) ⊃ · · · ⊃ Hr,0 ⊃ 0, (2)

its part for 0 � j � r

Hj,r−j ⊃ Hj+1,r−j−1 ⊃ · · · ⊃ Hr−1,1 ⊃ Hr,0 ⊃ 0,

and the associated non-canonical isomorphisms

Hj,r−j ∼= Ej,r−j0 ⊕Ej+1,r−j−10 ⊕ · · · ⊕ Er,00 , Er,00 = H
r,0, (3)

which are compatible with one another for each j.
The bigraded spaces H(A,D), E0(H(A)), and E∞ possess a natural structure

of bigraded algebras such that there exists an isomorphism

σ∞ : E∞ → E0(H(A))

of bigraded algebras uniquely defined by the condition of the commutativity of the
following diagram:

Z ∩Aj,i � Hj,i

↓ ↓
Ej,i∞

σj,i∞−→ Ej,i0 (H(A)) = H
j,i(A)/Hj+1,i−1(A).

(4)
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Hence if x ∈ Hj,i(A), y ∈ Hj′,i′(A), and σj,i∞ (x) = [x], σj
′,i′

∞ (y) = [y], then

σ∞(x ∪ y) = [x] ∪ [y] = [x∪ y]. (5)

Since σ∞ is a bigraded isomorphism, E
j,i
0 (H(A)) lives in the same rectangle j �m,

i � n, that is,
Ej,i0 (H(A)) = 0 for j > m or i > n, (6)

and
dimEm,n0 (H(A)) = 1.

By (3),
Hj,i(A) = 0, j > m. (7)

One consequence of (7) is as follows:

Em,n0 (H(A)) = Hm,n(A)/Hm+1,n−1 = Hm,n(A) = Hm+n(A).

The last equality follows from (3), the equalityHm+n(A) ∼= Em+n∞ = Em,n∞
∼= Em,n0 ,

and the dimension argument

1 = dimHm+n(A) = dimEm,n0 (H(A)) = dimHm,n(A).

Hence
Hm+n(A) = H0,m+n(A) = H1,m+n−1(A) = · · · = Hm,n(A)

and
Hm+n−i,i(A) = 0, i < n. (8)

If j =m and i = n, then the right arrow in (4) is an identity:

Z ∩Am,n −−−−→ Hm,n(A)� ∥∥∥
Em,n∞

σm,n∞−−−−→
∼=

Hm,n(A).

Consequently, by (5) we obtain the following result: if x ∈ Hj,i(A), y ∈ Hj′,i′(A),
j + j′ = m, i+ i′ = n, and σj,i∞(x) = [x], σ

j′,i′

∞ (y) = [y], then

σ∞(x ∪ y) = x ∪ y. (9)

Using the isomorphisms σm,n∞ : Em,n∞ → Hm,n(A), we fix generators ξ and ξ′ distinct
from zero such that

0 �= ξ ∈ Em,n∞ , 0 �= ξ′ = σm,n∞ (ξ) ∈ Hm,n(A) = Hm+n(A).

Relative to ξ and ξ′ we consider the symmetric bilinear forms

〈 · , · 〉∞ : E(j)∞ ×E(m+n−j)∞ → R,
〈 · , · 〉A : Hj(A)×Hm+n−j(A)→ R,
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that is, the forms such that 〈x, y〉∞ξ = x∪y for the first and a similar equality holds
for the second. The bilinear function 〈 · , · 〉∞ is non-degenerate by assumption. We
claim that 〈 · , · 〉A is non-degenerate. The dimension dimHr(A) is finite because

Hr(A) ∼= E(r)0 (H(A)) ∼= E(r)∞ ,

and E∞ is finite-dimensional. Hence we must check that if x ∈ Hj(A), x �= 0,
then there exists an element y ∈ Hm+n−j(A) such that 〈x, y〉A �= 0. The element x
belongs to the minimal member of the filtration (2):

x ∈ Hp,j−p(A), x /∈ Hp+1,j−p−1(A),

therefore [x] ∈ Ep,j−p0 , [x] �= 0. We take x ∈ Ep,j−p∞ such that σp,j−p∞ (x) = [x]. By
the non-degeneracy of 〈 · , · 〉∞ we can find an element y ∈ Hm−p,n−j−p such that
〈x, y〉∞ �= 0, where y ∈ Em−p,n−j−p∞ and σm−p,n−j−p∞ (y) = [y]. By (9) we obtain
x∪y = σ∞(x∪y), therefore 〈x, y〉A = 〈x, y〉∞ �= 0, which proves the non-degeneracy
of 〈 · , · 〉A. Thus, H(A) is a Poincaré algebra.
(3) We assume in what follows thatm+n = 4k (otherwise the signatures are zero

by definition). Consider the symmetric bilinear forms relative to the generators ξ
and ξ′,

〈 · , · 〉∞ : E(2k)∞ ×E(2k)∞ → R,
〈 · , · 〉A : H2k(A) ×H2k(A)→ R,

that is, the forms such that 〈x, y〉∞ξ = x∪ y in the first case and a similar equality
holds in the second. The space H2k(A) has the decreasing filtration (2), and by (3)
and (6),

H2k−n,n(A) = H2k−s,s(A), s � n.
We must consider two cases, m � n and m � n. In the case m � n we have

2k − n = (n+m)/2 − n = (m− n)/2 � 0. Hence

H2k(A) = H2k−n,n(A) ⊃ H2k−n+1,n−1 ⊃ · · · ⊃ H2k,0 ⊃ 0,

and

H2k−q,q(A)/H2k−q+1,q−1(A)
σ∞∼= E2k−q,q∞ , q = 0, . . . , n.

We choose subspaces V0, . . . , Vn, Vq ⊂ H2k−q,q, such that

H2k−q,q(A) = Vq ⊕H2k−q+1,q−1(A).

Of course,

V0 = H
2k,0, H2k = V0 ⊕ V1 ⊕ · · · ⊕ Vn, E2k−q,q∞

∼= Vq. (10)

If x ∈ Vi and y ∈ Vj , i+ j < n, then x∪ y ∈ H4k−i−j,i+j(A) = 0 by (8). If i+ j = n
and elements x ∈ E2k−i,i∞ and y ∈ E2k−j,j∞ correspond to x and y by virtue of σ∞,
then by (9) we obtain

〈x, y〉∞ = 〈x, y〉A.
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Since E∞ is a Poincaré algebra, it follows that

dimE2k−i,i∞ = dimE2k−n+i,n−i∞

and if dimE2k−i,i∞ > 0, then

〈 · , · 〉∞ : E2k−i,i∞ × E2k−n+i,n−i∞ → R

is a non-degenerate bilinear form. Hence the matrix of the bilinear symmetric
function 〈 · , · 〉A : H2k(A) ×H2k(A)→ R can be written in blocks as follows:


0 . . . 0 L0
0 . . . L1 ∗
... �

...
...

Ln . . . ∗ ∗


 , (11)

where the Li are non-singular square matrices and Li is the transpose of Ln−i.
Moreover, the matrix 


0 . . . 0 L0
0 . . . L1 0
... �

...
...

Ln . . . 0 0


 , (12)

which contains the same blocks on the antidiagonal as the first matrix and zeros

elsewhere, is the matrix of 〈 · , · 〉∞ on E(2k)∞ .
If some spaces Vq have dimension zero, then we modify the matrices (11) and (12)

by removing the rows and the columns corresponding to zero-dimensional spaces
and repeat the arguments.
The case m � n is a word-for-word repetition of the above-considered case,

including the procedure of the removal of the rows and the columns corresponding
to zero-dimensional spaces in the decomposition (10). Similar arguments demon-
strate that the bilinear form in the cohomology is non-degenerate in all dimensions.
Obviously, (see [21], Lemma 1) we have SignE∞ = SignH(A).

Using the same Lemma 1 in [21] we can additionally assert that SignH(A) is
equal to 0 if n is odd and to SignLn/2 if n is even.

Corollary 12. Let (A,Ar,∪, D, Aj) be an arbitrary DG-algebra with decreasing
filtration Aj and with regularity condition A0 = A, and let (E

j,i
s , ds) be its spectral

sequence. Assume that there exist positive integers m and n such that

(1) Ej,i2 = 0 for j > m and i > n;
(2) E2 is a Poincaré algebra with respect to the total gradation and the top group

E
(m+n)
2 = Em,n2 .

Then H(A) =
⊕m+n
r=0 H

r(A) is a Poincaré algebra, dimHm+n(A) = 1, and

SignE2 = SignH(A).

As a consequence we obtain the following result.
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Theorem 13 (Chern–Hirzebruch–Serre theorem for transitive Lie algebroids).
Let L be a transitive Lie algebroid on a compact oriented connected manifold with
unimodular isotropy Lie algebras gx ∼= g and trivial monodromy (that is, the pre-
sheaf H∗L of cohomology of g is constant on some good covering). Then the
cohomology algebra HL(M) is a Poincaré algebra and

SignL = SignE2 = SignM · Signg = 0.

There exist many TUIO-Lie algebroids among examples of Lie algebroids with
unimodular isotropy Lie algebras and trivial monodromy. In particular, Theorem 13
holds if

(1) M is simply connected, for example, if A = A(M ;F) is the Lie algebroid of
a TP-foliation on a compact simply connected manifold;

(2) AutG = IntG, where G is a simply connected Lie group with Lie algebra g,
for instance, if g is a simple Lie algebra of type Bl, Cl, E7, E8, F4, or G2
(see [27], Appendix D.8);

(3) the adjoint Lie algebra bundle g is trivial with respect to the structure group
Auts(g), for example, if A(G;H) is the Lie algebroid of the TC-foliation of
left cosets of a non-closed Lie subgroup H of an arbitrary Lie group G (see
the example at the end of § 2).
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